A New Benchmark for Instance-Level Image Classification
نویسندگان
چکیده
منابع مشابه
Instance Level Classification Confidence Estimation
Often the confidence of a classification prediction can be as important as the prediction itself although current classification confidence measures are not necessarily consistent between different data sets. Thus in this paper, we present an algorithm to predict instance level classification confidence that is more consistent between data sets and is intuitive to interpret. The results with fi...
متن کاملTowards a Benchmark for Instance Matching
In the general field of knowledge interoperability and ontology matching, instance matching is a crucial task for several applications, from identity recognition to data integration. The aim of instance matching is to detect instances referred to the same real-world object despite the differences among their descriptions. Algorithms and techniques for instance matching have been proposed in lit...
متن کاملA New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
متن کاملA New Image Data Set and Benchmark for Cervical Dysplasia Classification Evaluation
Cervical cancer is one of the most common types of cancer in women worldwide. Most deaths of cervical cancer occur in less developed areas of the world. In this work, we introduce a new image dataset along with ground truth diagnosis for evaluating image-based cervical disease classification algorithms. We collect a large number of cervigram images from a database provided by the US National Ca...
متن کاملA New Image Data Set and Benchmark for Cervical Dysplasia Classification Evaluation
Cervical cancer is one of the most common types of cancer in women worldwide. Most deaths of cervical cancer occur in less developed areas of the world. In this work, we introduce a new image dataset along with ground truth diagnosis for evaluating image-based cervical disease classification algorithms. First we collect a large number of cervigram images from a database provided by the US Natio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2986771